NUMERICAL ANALYSIS
 Assignment -9 (week 9)
 Total Marks - 25
 Posted on - 18/9/2017 (Monday);
 To be submitted on or before-27/9/2017 (Wednesday), 23.59 hours.

Problems on

- Fixed Point Iteration

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. A sequence x_{n} is defined by (a) $x_{0}=5, x_{n+1}=\frac{x_{n}^{4}}{16}-\frac{x_{n}^{3}}{2}+8 x_{n}-12$.

Show that x_{n} has cubic convergence to $p=4$.
Fill in the blanks:
(i) $g(4)=$ \qquad ; (ii) $g^{\prime}(4)=$ \qquad ; (iii) $g^{\prime \prime}(4)=$
(iv) If $e_{n+1}=C e_{n}^{\alpha}$, then $\alpha=$ \qquad .
\qquad
Here x_{n} generates successive iterates for a fixed point of the function g using $x_{n+1}=$ $g\left(x_{n}\right)$.
(b) Calculate the smallest integer ' n ' for which the inequality $\left|x_{n}-p\right|<10^{-6}$ is valid.
Fill in the blanks:
(i) If $e_{n+1}=C e_{n}^{3}+O\left(e_{n}^{4}\right)$, then $C=$ \qquad
(ii) $e_{n}=C^{\beta(n)}$, then $\beta(n)=$ \qquad
(iii) $n \geq$ \qquad . ($5+5=10$ marks $)$

Show your work for the solution of problem 1 in the space provided below.
2. The following methods are proposed to compute (21) ${ }^{\frac{1}{3}}$. Determine the order of convergence of each of these methods.
(a) $x_{n}=\frac{1}{21}\left[20 x_{n-1}+\frac{21}{x_{n-1}^{2}}\right]$.
(b) $x_{n}=x_{n-1}-\frac{x_{n-1}^{3}-21}{3 x_{n-1}^{2}}$.

Fill in the blanks:
(i) order of convergence of (a) is \qquad ,
(ii) order of convergence of (b) is \qquad . $(3+3=6$ marks $)$

Show your work for the solution of problem 2 in the space provided below.
3. The error in an iteration method $x_{n+1}=g\left(x_{n}\right)$ is known to decrease geometrically. Show that, from three consecutive iterates x_{n-1}, x_{n}, x_{n+1}, a new approximation to the exact root p may be given by $p=\frac{x_{n+1} x_{n-1}-x_{n}^{2}}{x_{n+1}-2 x_{n}+x_{n-1}}$
Fill in the blanks:
(a) If the error at the $n^{t h}$ step is denoted by e_{n-1}, then
(i) error at $n^{\text {th }}$ step is $=$
(ii) error at $(n+1)^{\text {th }}$ step is $=$
(iii) $x_{n+1} x_{n-1}-x_{n}^{2}=$ \qquad .
(iv) $x_{n+1}-2 x_{n}+x_{n-1}=$ \qquad (4 marks)

Show your work for the solution of problem 3 in the space provided below.
4. We have shown in one of the practice problems that $g(x)=2^{-x}$ has a unique fixed point on $\left[\frac{1}{3}, 1\right]$. Use fixed point iteration method to find an approximation to the fixed point that is accurate to within 10^{-4}.
(Hint: start with $p_{0}=1$ and perform 12 iterations)
Examine the number of iterations required to achieve 10^{-4} accuracy. (Hint: We show in practice problem that $k=0.551$. Use this in your solution). Fill in the blanks:
(a) $n \simeq$ \qquad ; (b) $p_{1}=$ \qquad (c) $p_{12}=$ \qquad .

Show your work for the solution of problem 4 in the space provided below.

