NUMERICAL ANALYSIS Assignment -9 (week 9) Total Marks - 25 Posted on - 18/9/2017 (Monday); To be submitted on or before-27/9/2017 (Wednesday), 23.59 hours.

Problems on

• Fixed Point Iteration

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem **which you will have to show** in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. A sequence x_n is defined by (a) $x_0 = 5$, $x_{n+1} = \frac{x_n^4}{16} - \frac{x_n^3}{2} + 8x_n - 12$. Show that x_n has cubic convergence to p = 4. Fill in the blanks: (i) g(4) =______; (ii) g'(4) =_____; (iii) g''(4) =_____; (iii) g''(4) =_____; (iv) If $e_{n+1} = Ce_n^{\alpha}$, then $\alpha =$ ______. Here x_n generates successive iterates for a fixed point of the function g using $x_{n+1} = g(x_n)$. (b) Calculate the smallest integer 'n' for which the inequality $|x_n - p| < 10^{-6}$ is valid. Fill in the blanks: (i) If $e_{n+1} = Ce_n^3 + O(e_n^4)$, then C =______ (ii) $e_n = C^{\beta(n)}$, then $\beta(n) =$ ______ (iii) $n \ge$ ______. (5+5=10 marks)

Show your work for the solution of problem 1 in the space provided below.

2. The following methods are proposed to compute $(21)^{\frac{1}{3}}$. Determine the order of convergence of each of these methods.

(a)
$$x_n = \frac{1}{21} [20x_{n-1} + \frac{21}{x_{n-1}^2}].$$

(b) $x_n = x_{n-1} - \frac{x_{n-1}^3 - 21}{3x_{n-1}^2}.$
Fill in the blanks:
(i) order of convergence of (a) is ______,
(ii) order of convergence of (b) is ______. (3+3=6 marks))

Show your work for the solution of problem 2 in the space provided below.

3. The error in an iteration method $x_{n+1} = g(x_n)$ is known to decrease geometrically. Show that, from three consecutive iterates x_{n-1}, x_n, x_{n+1} , a new approximation to the exact root p may be given by

the obtained for p^{2} may be given by $p = \frac{x_{n+1} - 2x_{n} + x_{n-1}}{x_{n+1} - 2x_{n} + x_{n-1}}$ Fill in the blanks: (a) If the error at the n^{th} step is denoted by e_{n-1} , then (i) error at n^{th} step is = ______ (ii) error at $(n+1)^{th}$ step is = ______ (iii) $x_{n+1}x_{n-1} - x_{n}^{2} = _____.$ (iv) $x_{n+1} - 2x_{n} + x_{n-1} = _____.$ (4 marks)

Show your work for the solution of problem 3 in the space provided below.

4. We have shown in one of the practice problems that g(x) = 2^{-x} has a unique fixed point on [¹/₃, 1]. Use fixed point iteration method to find an approximation to the fixed point that is accurate to within 10⁻⁴. (Hint: start with p₀ = 1 and perform 12 iterations) Examine the number of iterations required to achieve 10⁻⁴ accuracy. (Hint: We show in practice problem that k = 0.551. Use this in your solution). Fill in the blanks: (5 marks)
(a) n ≃ _____; (b) p₁ = _____ (c) p₁₂ = _____.

Show your work for the solution of problem 4 in the space provided below.